<h3>Answer: B) 5x^4</h3>
==============================================
Work Shown:
125 = 5*5*5 = (5)^3
x^12 = (x^4)*(x^4)*(x^4) = (x^4)^3
125x^12 = (5x^4)^3
![\large \sqrt[3]{125x^{12}} = \left(125x^{12}\right)^{1/3}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Cleft%28125x%5E%7B12%7D%5Cright%29%5E%7B1%2F3%7D)
![\large \sqrt[3]{125x^{12}} = \left((5x^4)^3\right)^{1/3}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Cleft%28%285x%5E4%29%5E3%5Cright%29%5E%7B1%2F3%7D)
![\large \sqrt[3]{125x^{12}} = (5x^4)^{3*(1/3)}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%285x%5E4%29%5E%7B3%2A%281%2F3%29%7D)
![\large \sqrt[3]{125x^{12}} = (5x^4)^{1}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%285x%5E4%29%5E%7B1%7D)
![\large \sqrt[3]{125x^{12}} = \textbf{5x}^{\textbf{4}}](https://tex.z-dn.net/?f=%5Clarge%20%5Csqrt%5B3%5D%7B125x%5E%7B12%7D%7D%20%3D%20%5Ctextbf%7B5x%7D%5E%7B%5Ctextbf%7B4%7D%7D)
Answer:
z = -9
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Terms/Coefficients/Degrees
Step-by-step explanation:
<u>Step 1: Define</u>
-21 = z - (-6 - 2z)
<u>Step 2: Solve for </u><u><em>z</em></u>
- Distribute negative: -21 = z + 6 + 2z
- Combine like terms: -21 = 3z + 6
- Isolate <em>z</em> term: -27 = 3z
- Isolate <em>z</em>: -9 = z
- Rewrite: z = -9
Answer:
1. True, 2. False, 3. I am blind.
Step-by-step explanation:
For the 3rd one I cannot confirm becaue I am blind.
Step-by-step explanation:
all I see is a piece of paper