Answer:
i am sure its the last one
Answer:
See explanation
Explanation:
The wittig reaction is an organic reaction in which an aldehyde or a ketone reacts with a phosphonium ylide to give an alkene. This phoshonium ylide that participates in the reaction is usually generated insitu in the system by reaction of an alky or aryl triphenylphosphonium halide salt with a base(sodium hydroxide is mostly used).
In this particular reaction 4-methylbenzaldehyde and benzyltriphenylphosphonium chloride were reacted together in the presence of sodium hydroxide and the product with the structure shown in the answer was obtained as the major isomer produced in the reaction.
Hello!
The basic equations to solve this is
pH = -log[H+]
pOH = -log[OH-]
pH + pOH = 14
------------------------------------------------------------------------------------------------------
Find pHpH = -log(1 * 10^-1)
pH = 1
------------------------------------------------------------------------------------------------------
Find pOH1 + pOH = 14
pOH = 13
------------------------------------------------------------------------------------------------------
Find OH-[OH-] = 10^(-pOH)
[OH-] = 1 * 10^-13mo/L
The answer is
![[OH-] = 1 * 10^{-13} mol/L](https://tex.z-dn.net/?f=%5BOH-%5D%20%3D%201%20%2A%2010%5E%7B-13%7D%20mol%2FL)
Hope this helps!
For radioactive decay, we can relate current amount, initial amount, decay constant and time using:
N = No x exp(-λt)
Half-life = ln(2)/λ
λ = ln(2) / 5730
N/No = 80% = 0.8
0.8 = exp( -ln(2)/5730 x t)
t = 1844 years
Answer:
a) NH₄NO₃ ⇒ N₂O + 2 H₂O
b) 1.69 × 10²³ molecules
Explanation:
Step 1: Write the balanced equation
NH₄NO₃ ⇒ N₂O + 2 H₂O
Step 2: Convert 11.2 g of NH₄NO₃ to moles
The molar mass of NH₄NO₃ is 80.04 g/mol.
11.2 g × 1 mol/80.04 g = 0.140 mol
Step 3: Calculate the moles of H₂O produced
0.140 mol NH₄NO₃ × 2 mol H₂O/1 mol NH₄NO₃ = 0.280 mol H₂O
Step 4: Calculate the number of molecules in 0.280 moles of water
We will use Avogadro's number.
0.280 mol × 6.02 × 10²³ molecules/1 mol = 1.69 × 10²³ molecules