Answer:
13,456
Step-by-step explanation:
Tn= a+(n-1)d
a is the first term, n is the given number and d is the common difference. d is given by subtracting the first term from the second term or the second from the third. Therefore the the 59th term of the sequence 29, 37, 45 is,
Tn= 29+(59-1)8
=29(58)8
=13,456
a) We know that the probability Jane will win is 0.2, and draws is 0.3, which leaves the probability of her losing to be 0.5 (1 - 0.2 - 0.3 = 0.5).
I'll begin by filling in for the first game:
win = 0.2, draw = 0.3, lose = 0.5
Next, we'll fill in for if she wins, draws, or loses the second game. The probabilities would be the same as the first game for the second game.
Win (0.2): win = 0.2, draw = 0.3, lose = 0.5
Draw (0.3): win = 0.2, draw = 0.3, lose = 0.5
Lose (0.5): win = 0.2, draw = 0.3, lose = 0.5
b) To find the probability that Jane will win both games, we need to multiply the probability of Jane winning the first game by the probability of her winning the second game.
0.2 x 0.2 = 0.04
Hope this helps! :)