Answer:
<em>The balloon is 66.62 m high</em>
Explanation:
<u>Combined Motion
</u>
The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is

The values are


We must find the values of t such that the height of the camera is 0 (when it hits the ground)


Multiplying by 2

Clearing the coefficient of 

Plugging in the given values, we reach to a second-degree equation

The equation has two roots, but we only keep the positive root

Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is



Answer: conduction :it transfers heat between objects that are in direct contact with eachother
The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant

∴ Angle by which the second order line appear is 43.16°
Answer:
A.
Explanation:
because the carbonic acid reacts to the limestone.