Answer:
The combined speed of camper and canoe is 1.71 m/s.
Explanation:
Given that,
Mass of camper 1, m = 100 kg
Speed of camper 1, v = 3 m/s
The combined mass of another camper and canoe is, M = 175 kg
We need to find the combined speed of camper and canoe. According to the conservation of linear momentum, the momentum of first camper is equal to linear momentum of the canoe and the second camper.

So, the combined speed of camper and canoe is 1.71 m/s.
Frequency = how many waves you get per sec
Period = how long each wave takes
Period = 1/frequency
<span>A. Boyle's law only works when the pressure is constant.
</span><span>D. Charles's law relates volume and pressure.
Hope this helps!</span>
Answer:
Vd = 1.597 ×10⁻⁴ m/s
Explanation:
Given: A = 3.90×10⁻⁶ m², I = 6.00 A, ρ = 2.70 g/cm³
To find:
Drift Velocity Vd=?
Solution:
the formula is Vd = I/nqA (n is the number of charge per unit volume)
n = No. of electron in a mole ( Avogadro's No.) / Volume
Volume = Molar mass / density ( molar mass of Al =27 g)
V = 27 g / 2.70 g/cm³ = 10 cm³ = 1 × 10 ⁻⁵ m³
n= (6.02 × 10 ²³) / (1 × 10 ⁻⁵ m³)
n= 6.02 × 10 ²⁸
Now
Vd = (6A) / ( 6.02 × 10 ²⁸ × 1.6 × 10⁻¹⁹ C × 3.9×10⁻⁶ m²)
Vd = 1.597 ×10⁻⁴ m/s
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed,
rev/sec
rad/sec
= 5.89 rad/sec
Therefore, force required,

= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J