Answer:
t₂ = 3.89 s
Explanation:
given,
speed of car = 23 m/s
speed of motorcycle = 23 m/s
after time of 4 s distance between them is equal to = 53 m
motorcycle accelerates at = 7 m/s
time taken to catch up with car = ?
let t₂ be the time in which motorcycle catches car.
distance traveled by car in t₂ s
d = 23 t₂ + 53
distance traveled by motorcycle
using equation of motion


now, equating both the distances


t₂ = 3.89 s
time taken by the motorcycle to catch the car is equal to 3.89 s
Answer:
27.82998 km/min
Explanation:
To convert m/sec into km/hr, multiply the number by 18 and then divide it by 5.
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]

Now we can use the first statement to get the first equation:

where:
W₁₋₂ = work from the state 1 to 2.


where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]

![58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]](https://tex.z-dn.net/?f=58%20%3D%20v%5E%7B2%7D%20%2B29.43%5C%5Cv%5E%7B2%7D%20%3D28.57%5C%5Cv%3D%5Csqrt%7B28.57%7D%5C%5Cv%3D5.34%5Bm%2Fs%5D)
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s