Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Explanation: To find the answer, we need to know more about the Orbital and escape velocities.
<h3>
What is Orbital and Escape velocity?</h3>
- Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
- The expression for orbital velocity near to the surface of earth will be,

- Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
- The expression for orbital velocity will be,

- If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
- We need about twice the raw speed to go to the sun than to leave the sun.
Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Learn more about orbital and escape velocity here:
brainly.com/question/28045208
#SPJ4
Heidhebd bdjdishrhr bdjjdhdhrhr heheheh hdudjdhhf hdjdhdhf
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
The ONLY way to change the volume of a sample of gas is to transfer it to a container with different volume.
Simply changing its temperature or pressure in the same jar won't do it. Any amount of gas always fills whatever container you keep it in.
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:
