The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
Answer:- 13.6 L
Solution:- Volume of hydrogen gas at 58.7 Kpa is given as 23.5 L. It asks to calculate the volume of hydrogen gas at STP that is standard temperature and pressure. Since the problem does not talk about the original temperature so we would assume the constant temperature. So, it is Boyle's law.
Standard pressure is 1 atm that is 101.325 Kpa.
Boyle's law equation is:

From given information:-
= 58.7 Kpa
= 23.5 L
= 101.325 Kpa
= ?
Let's plug in the values and solve it for final volume.

On rearranging the equation for 

= 13.6 L
So, the volume of hydrogen gas at STP for the given information is 13.6 L.
Answer:

Explanation:
Let us first take a look at the image below;
In the acid - base reaction; we can see the transfer of electrons that takes place;
We can also see that the reaction goes in the direction which converts the stronger acid and the stronger base to the weaker acid and the weaker base.
The stronger acid is shown with the one with more negative
Value.
∴ The equilibrium constant for the acid-base reaction is expressed as:


From
Value (shown in the image below), it is clear and vivid that hydrobromic acid is a stronger acid than the ethyloxonium ion, therefore the equilibrium lies to the right.
From the chemical equation (shown in the attached image); the equilibrium constant for the acid-base reaction can be expressed as:



Just like how heat moves from a region of higher
temperature to a region of lower temperature, molecules also tend to move from
a region of higher concentration to a region of lower concentration. This is
called natural diffusion and is naturally happening to reach stability.
Hydrochloric acid ionisation is as follows;
HCl ---> H⁺ + Cl⁻
HCl is a strong base so there's complete dissociation of acid to H⁺ ions
The number of HCl moles is equivalent to number of H⁺ ions present
1 L of solution contains - 11.6 moles of H⁺ ions
In 35 ml number of moles - 11.6 mol/L / 1000 ml x 35 ml = 0.406 mol
This number of moles are dissolved in 500 ml
therefore molarity = 0.406 mol /500 ml x 1000 ml = 0.812 M