The answer is B: chronological order
Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
The atomic number of an element never changes no matter how many neutrons they have so Sulfur would just have an atomic number of 16 like normal.
Answer:
2Na⁺ (aq) and 2OH⁻(aq)
Explanation:
Spectator ions:
Spectator ions are those ions which are same on both side of chemical reaction. These ions are same in the reactant side and product side. Their presence can not effect the chemical equilibrium that's why when we write the net ionic equation these ions are neglect or omitted.
Given ionic equation:
Ba⁺²(aq) + 2OH⁻(aq) + 2Na⁺ (aq) + CO²⁻₃(aq) → BaCO₃(s) + + 2Na⁺ (aq) + 2OH⁻(aq)
In given ionic equation by omitting the spectator ions i.e, 2Na⁺ (aq) and 2OH⁻(aq) net ionic equation can be written as,
Net ionic equation:
Ba⁺²(aq) + CO²⁻₃(aq) → BaCO₃(s)