The air resistance on the feather would be the correct answer.
Answer:
Explanation:
a ) AM radio band (540–1600 kHz)
frequency = 540 kHz = 540 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 540 x 10³
= 555.55 m
frequency = 1600 kHz = 1600 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 1600 x 10³
= 187.5 m
maximum wavelength = 555.55 m
minimum wavelength = 187.5 m
b )
AM radio band (88 - 108 MHz)
frequency = 88 MHz = 88 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 88 x 10⁶
= 3.41 m
frequency = 108 MHz = 108 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 108 x 10⁶
= 2.78 m
maximum wavelength = 3.41 m
minimum wavelength = 2.78 m
Given data;
Fn = 10 N
Fs = 7 N
Fe = 4 N
force in X direction (Fx) = 4 N
force in Y direction (Fy) = 10-7 = 3 N
Net force (Fnet) = Sq.root[(Fx)² + (Fy)²]
= Sq root [ 4² + 3² ]
= 25 N
<em> Net force acting = 25 N</em>
Answer:
option (a)
Explanation:
the angular velocity of the carousel is same througout the motion, so the angular velocity of all the horses is same, but the linear velocity is different for different horses.
As the angular displacement of all the horses are same in the same time so the angular velocity is same.
The relation between the linear velocity and the angular velocity is given by
v = r ω
where, v is linear velocity and r be the distance between the horse and axis of rotation and ω be the angular velocity.
So, the angular velocity of Alice horse is same as the angular velocity of Bob horse.
ωA = ωB
Thus, option (a) is true.