The representation of this problem is shown in Figure 1. So our goal is to find the vector

. From the figure we know that:

From geometry, we know that:

Then using
vector decomposition into components:

Therefore:

So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector

, that is:
</span>

Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
Answer:
d) Wind
Explanation:
Secondary energy is energy produced by converting energy available in its natural state in the environment. Hence Wind is a primary source not a secondary source
Answer:
The speed stays constant after the force stops pushing.
Explanation:
Speed always stays constant when the force stops pushing it.
I don’t know because it’s very difficult
Answer:
Explanation:
Let l be th length of pendulum
loss of height
= mg ( l - l cos50)
= mg l ( 1-cos50)
1/2 mv² = mgl ( 1-cos50)
v = √[2gl( 1- cos50)]
= √( 2 x 9.8 x .7 x ( 1-cos50)
= 2.2 m / s
speed at the bottom = 2.2 m /s
b )
centripetal acceleration
= v² / r
= 2.2 x 2.2 / .7
= 6.9 m /s²
C )
If T be the tension
T - mg = mv² / r
T = mg + mv² / r
= .13 X 9.8 + .13 X 6.9
= 2.17 N