To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

Here,
= Angle between areal vector and magnetic field direction.
According to Faraday's law, induced emf in the loop is,





At time
, Induced emf is,


Therefore the magnitude of the induced emf is 10.9V
I have no idea I need the answer too
Answer: 18.27°
Explanation:
Given
Index of refraction of blue light, n(b) = 1.64
Wavelength of blue light, λ(b) = 440 nm
Index of refraction of red light, n(r) = 1.595
Wavelength of red light, λ(r) = 670 nm
Angle of incident, θ = 30°
Angle of refraction of red light is
θ(r) = sin^-1 [(n(a)* sin θ) / n(r)], where n(a) = index of refraction of air = 1
So that,
θ(r) = sin^-1 [(1 * sin 30) / 1.595]
θ(r) = sin^-1 (0.5 / 1.595)
θ(r) = sin^-1 0.3135
θ(r) = 18.27°
The speed and velocity of a moving body become identical when it tends to move in a straight line.
Answer:
The correct option is;
E. motion of tectonic plates.
Explanation:
The Moon is formed from the Earth, and so have similar composition. However, the smaller size of the moon as well as the low temperature of the Moon's mantle compared to the interior of the earth, contribute the state of the Moon having no active tectonic plate motion and no convection.
The convection in the mantle, drives Earth's tectonic plate motions. The mantle within Earth moves at a rate of some centimeters annually, while the Moon, geologically is a dying world.