1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
13

uniform solid sphere of radius R rotates about a diameter with an angular speed 536 radians/second. The sphere then collapses un

der the action of internal forces to a final radius R/2. What is the final angular speed of the sphere in radians/second?
Physics
2 answers:
weeeeeb [17]3 years ago
4 0

Answer:

2144 rad/s

Explanation:

R1 = R

ω1 = 536 rad/s

R2 = R/2

ω2 = ?

Mass is M

By use of angular momentum remains constant if no external force is acting on the body.

I1 ω1 = I2 ω2

The moment of inertia of solid sphere is 12/5 MR^2

So, 2/5 x M R^2 x 536 = 2/5 x M (R/2)^2 x ω2

536 = ω2 / 4

ω2 = 2144 rad/s

Ainat [17]3 years ago
3 0

Answer:

ω₂ = 2144 rad/s

Explanation:

angular  speed =  536 radians/second

as, we all know the moment of inertia of solid sphere

I_{sphere}= \dfrac{2}{5}MR^2

here in the question two radius are given

by using angular momentum conservation

I_1 \omega_1 = I_2 \omega_2

\dfrac{2}{5}MR_1^2 \omega_1 =\dfrac{2}{5}MR_2^2 \omega_2\\R^2\times 536= \dfrac{R^2}{4}\times \omega_2

\omega_2 = 4 \times 536

ω₂ = 2144 rad/s

You might be interested in
The radius of the aorta is about 1 cm and the blood flowing through it has a speed of about 30 cm/s. Calculate the average speed
puteri [66]

Answer:

The average speed of the blood in the capillaries is 0.047 cm/s.

Explanation:

Given;

radius of the aorta, r₁ = 1 cm

speed of blood, v₁ = 30 cm/s

Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²

Area of the capillaries, A₂ = 2000 cm²

let the average speed of the blood in the capillaries = v₂

Apply continuity equation to determine the average speed of the blood in the capillaries.

A₁v₁ = A₂v₂

v₂ = (A₁v₁) / (A₂)

v₂ = (3.142 x 30) / (2000)

v₂ = 0.047 cm/s

Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.

4 0
2 years ago
A tree falls in a forest. How many years must pass before the 14C activity in 1.03 g of the tree's carbon drops to 1.02 decay pe
Illusion [34]

Answer:

t = 5.59x10⁴ y

Explanation:

To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:

A_{t} = A_{0}\cdot e^{- \lambda t}    (1)

<em>where A_{t}: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>

To find A₀ we can use the following equation:  

A_{0} = N_{0} \lambda   (2)

<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>

From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:        

N_{0} = \frac{m_{T} \cdot N_{A} \cdot abundance}{m_{^{12}C}}

<em>where m_{T}: is the tree's carbon mass, N_{A}: is the Avogadro's number and m_{^{12}C}: is the ¹²C mass.  </em>

N_{0} = \frac{1.03g \cdot 6.022\cdot 10^{23} \cdot 1.3\cdot 10^{-12}}{12} = 6.72 \cdot 10^{10} atoms ^{14}C    

Similarly, from equation (2) λ is:

\lambda = \frac{Ln(2)}{t_{1/2}}

<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

\lambda = \frac{Ln(2)}{5700y} = 1.22 \cdot 10^{-4} y^{-1}

So, the initial activity A₀ is:  

A_{0} = 6.72 \cdot 10^{10} \cdot 1.22 \cdot 10^{-4} = 8.20 \cdot 10^{6} decays/y    

Finally, we can calculate the time from equation (1):

t = - \frac{Ln(A_{t}/A_{0})}{\lambda} = - \frac {Ln(\frac{1.02decays \cdot 24h \cdot 365d}{1h\cdot 1d \cdot 1y \cdot 8.20 \cdot 10^{6} decays/y})}{1.22 \cdot 10^{-4} y^{-1}} = 5.59 \cdot 10^{4} y              

I hope it helps you!

4 0
3 years ago
A runner exerts a net force of 335 n to accelerate at a rate of 2.5 m/s what is the runners mass
Olegator [25]
F=ma
M=F/a
M=335/2.5
M=134 kg
8 0
3 years ago
2. A solid plastic cube of side 0.2 m is submerged in a liquid of density 0.8 hgm calculate the
kotegsom [21]

Answer:

vpg = 0.064 N

Explanation:

Upthrust = Volume of fluid displaced

upthrust liquid on the cube g=10ms−2

vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N

vpg = 0.064 N

hope it helps.

3 0
3 years ago
The kinetic energy of the molecules inside the balloon _______ which
11111nata11111 [884]

Answer:

Increase,.faster

Explanation:

The kinetic energy of the molecules inside the balloon

increases

which means they are moving

faster

I hope this helps you :)

6 0
3 years ago
Other questions:
  • Which of Newton’s laws accounts for the following statement? Negative acceleration is proportional to applied braking force
    7·1 answer
  • 3. A cheetah is known to be the fastest mammal on Earth, at least for short
    8·1 answer
  • If the equipotential surfaces due to some charge distribution are vertical planes, what can you say about the electric field dir
    7·1 answer
  • A wire with a mass of 1.50 g/cm is placed on a horizontal surface with a coefficient of friction of 0.200. The wire carries a cu
    6·1 answer
  • Find the horizontal and vertical components of a projectile that is fired with a velocity of 50m/s at 30 degrees relative to the
    13·1 answer
  • A car traveling at 37m/s starts to decelerate steadily. It comes to a complete stop in 15 seconds. What is it’s acceleration
    15·1 answer
  • A force of 1.5 × 102 N is exerted on a charge of 1.4 × 10–7 C that is traveling at an angle of 75° to a magnetic field.
    11·2 answers
  • 2) How many significant figures are in the number 0.0037010?<br>​
    8·1 answer
  • A race car rounding a corner at a constant speed of 200 miles per hour.
    6·1 answer
  • Find the components of vtot along the x and y axes in Figure 3.25, where = 23.0° and vtot = 7.56 m/s.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!