Answer:
3
Explanation:
Applying,
= R/R'............... Equation 1
Where n' = number of halflives that have passed, R = Original atom of the substance, R' = atom of the substance left after decay.
From the question,
Given: R = 40 atoms, R' = 5 atoms
Substitute these values into equation 1
= 40/5
= 8
= 2³
Equation the base,
n' = 3
Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
<em>Based on the equilibrium:</em>
<em>Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺</em>
<em>kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]</em>
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
<em>
</em>
<em>
</em>
<em />
Answer:
See explanation.
Explanation:
Since potassium tert-butoxide is a strong bulky base, we expect that an elimination reaction predominates.
This reaction is expected to occur by E2 mechanism. The cis isomer of 1-bromo-4-tert-butylcyclohexane is known to react faster by E2 mechanism because it fulfills the anticoplanar arrangement required for for E2 mechanism, where the leaving group and adjacent proton must be anti to each other and in the same plane. The trans isomer can not fulfill this requirement.
<span>Displaced volume :
final volume - initial volume
32.4 mL - 25.2 mL => 7.2 mL
Density = mass / volume
D = 22.6 g / 7.2 mL
D = 3.1388 g/mL
hope this helps!</span>