Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Answer:
Explanatio(3) Atomic masses are a weighted average of the naturally occurring isotopes.
(3) Atomic masses are a weighted average of the naturally occurring isotopes. is the best statement for why most atomic masses on the Periodic Table are decimal numbers.
OMG WRONG THING SOOO SOO SORRYY i mean to put this answer on something else
Answer:
C. The reaction is energetically favorable.
Explanation:
The reaction which shows the removal of the terminal phosphate from the ATP is shown below:

The Gibbs' free energy change of this reaction, 
Hence, Option A is not correct.
It is a type of hydrolysis reaction in which water is being added to the molecule.
Hence, Option B is not correct.
The Gibbs' free energy change is negative which means that the reaction is energetically favorable.
Option C is correct.