Answer:
8
Explanation:
From the question given above, the following data were obtained:
t–butyl ion = (CH₃)₃C⁺
Number of valence electron =?
The valence electron(s) talks about the combining power of an element or compound as the case may be.
Considering the t–butyl ion, (CH₃)₃C⁺ we can see that it has a charge of +1 indicating that it has given out 1 electron to attain the stable octet configuration which has a valence electrons of 8. Thus, the valence electron of t–butyl ion, (CH₃)₃C⁺ is 8
I believe the answer is background radiatin
Answer:
Q sln = 75.165 J
Explanation:
a constant pressure calorimeter:
∴ m sln = m Ba(OH)2 + m HCl
∴ molar mass Ba(OH)2 = 171.34 g/mol
∴ mol Ba(OH)2 = (0.06 L)(0.3 mol/L) = 0.018 mol
⇒ mass Ba(OH)2 = (0.018 mol)(171.34 g/mol) = 3.084 g
∴ molar mass HCl = 36.46 g/mol
∴ mol HCl = (0.06 L)(0.60 mol/L) = 0.036 mol
⇒ mass HCl = (0.036 mol)(36.46 g/mol) = 1.313 g
⇒ m sln = 3.084 g + 1.313 g = 4.3966 g
specific heat (C):
∴ C sln = C H2O = 4.18 J/g°C
∴ ΔT = 26.83°C - 22.74°C = 4.09°C
heat absorbed (Q):
⇒ Q sln = (4.3966 g)(4.18 J/g°C)(4.09°C)
⇒ Q sln = 75.165 J
First convert the 112 km/hr ratio into m/s (meters per second). To do this you multiply 112 km with 1000 m/km (since there's 1000 m in one km). You get 112000 m. Then multiply 1 hr with 60 min/hr (since there's 60 min in one hr. You get 60 min, but you want seconds, so multiply 60 min with 60 s/min to get 3600 s. There you go! Your answer is the speed of 112000m/3600s, but you can simplify that to 31.11m/s (since the answer should be in ? meters per 1 second.
Also, the "100-m-distance" part of the question is just to throw you off, because one particular speed obviously stays constant over any distance. Hope that helps :)
I think it's the last one
(and I'm so sorry if I'm wrong)