Answer:
Explanation: The lowest pressure in a laboratory is 4.0×10^-11Pa
Using Ideal gas equation
PV = nRT
P= 4.0×10^-11Pa
V= 0.020m^3
T= 20+273= 293k
n=number of moles = m/A
Where m is the number of molecules and A is the Avogradro's number=6.02×10²³/mol
R=8.314J/(mol × K)
PV= m/A(RT)
4.0×10^-11 ×0.020 = m/6.02×10²³(8.314×293)
m = 4.0×10^-11×0.020×6.02×10^23 / (8.314×293)
m = 1.98×10^8 molecules
Therefore,the number of molecules is 1.98×10^8
Answer: Penicillin G (also called benzylpenicillin) was discovered by accident in 1928. Alexander Fleming, a Scottish physician-scientist was growing a type of bacteria called Staphylococcus Aureus on an uncovered petri dish when it became contaminated with mold spores.
Explanation:
Answer:
595.5
Explanation:
chloroform with 24.0 g C was 238.2 g
24g/238.2g= 60g/x
595.5
<span>The symbol for the element whose atoms have 40 electrons each is Zr. This is the element zirconium. In the atoms of a pure element, the number of positively charged protons is normally equal to the number of negatively charged electrons. Hence, the number of electrons in the atom can be inferred from the atomic number, which corresponds to the number of protons in an atom. The atomic number of zirconium is 40.</span>
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.