Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
Answer:
Many difficulties would arise if there was a lack of uniformity in the measurement of various weights and measures between business, industry, individuals and countries. The biggest implications for a lack of uniformity are in health and safety, equity and sustainability.
Explanation:
palike nlng po
C₂H₃O₂⁻ is an anion.
<u>Explanation:</u>
NaC₂H₃O₂(s) → Na⁺(aq) + C₂H₃O₂⁻(aq)
NaC₂H₃O₂ when dissociated, yields Na⁺ and C₂H₃O₂⁻.
Anion is a negatively charged ion.
In this case, C₂H₃O₂⁻ is an anion.
An average facility manager can build one new facility
during his or her career.
<span>A </span>facilities manager<span> is the ultimate organiser, making sure that a
workplace meets the needs of employees by managing all of the required
services. In this job, you will be responsible for the </span>management<span> of services and processes that support the core
business of an organisation.</span>
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m