I'm pretty sure the answer is d.The weight of the book and the table's upward force on the book are equal in magnitude but opposite in direction.
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?
Answer:
Vectors are used in science to describe anything that has both a direction and a magnitude. They are usually drawn as pointed arrows, the length of which represents the vector's magnitude.
Explanation:
They are usually drawn as pointed arrows, the length of which represents
Answer:
<h2>42 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 7 kg
acceleration = 6 m/s²
We have
force = 7 × 6 = 42
We have the final answer as
<h3>42 N</h3>
Hope this helps you
1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.