Answer:1. In Glucose: C : H : O = 1 : 2 : 1
2. In Sulfuric acid: H : S : O = 2 : 1 : 4
3. In Butene: C : H = 1 : 2
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.
Answer:
340 grams Ca₃P₂ (2 sig. figs.)
Explanation:
3Ca + 2P => Ca₃P₂
5.6 mole + excess => ? grams
Convert the 'known' to a coefficient of 1 by dividing all coefficients by 3.
=> Ca + 2/3P => 1/3Ca₃P₂
From the above, 1 mole of Ca => 1/3 mole Ca₃P₂
∴ 5.6 mole Ca in an excess of P => 1/3(5.6 mole) Ca₃P₂
=> 1.8666 mol Ca₃P₂ (calculator answer) ≅ 1.9 mol Ca₃P₂
=> 1.9 mole x 182 g Ca₃P₂/mol Ca₃P₂ = 339.73333 grams Ca₃P₂
≅ 340 grams Ca₃P₂ (2 sig. figs.)
Answer: 121.7558 amu
Explanation:
Average atomic mass of the unknown element =
(Mass of isotope 1 x Relative Abundance of Isotope 1) + ( Mass of Isotope 2 x Relative Abundance of Isotope 2)
(120.9 x 0.5721) + (122.9 x 0.4279) = 69.16689 + 52.58891
Average mass of the unknown element = 121.7558 amu