We have that the sea level pressure for Leh area is 1150mb mathematically given as
Ps= 1150 mb
<h3>
Sea level pressure</h3>
Question Parameters:
Ladakh is 800 mb.
<u>assuming </u>that Leh is at an altitude of 3500 m and every 100 m
increase in height with respect to sea level corresponds to 10 mb pressure,
Generally, for 3500m the pressure change will be 350 mb.
Therefore, here for the sea level <em>pressure</em> we need to add,
Ps=800+350
Ps= 1150 mb
For more information on Pressure visit
brainly.com/question/25688500
During Physical Change there would be a re-arrangements of atoms or molecules, changes of the arrangement may be change in the distance between atoms or molecules, change in the crystal form, .....etc
for example: water when heated it undergoes a Physical Change and turn into vapor, this means the heat cause the distance between water molecules to increase, so it transferred from the liquid form to the gas form.
NOTE that in Physical Change there is no change in the chemical structure and the material retains all its chemical properties, and no new compounds are produced.
again, A physical change is any change not involving a change in the substance's chemical identity. Matter undergoes chemical change when the composition of the substances changes: one or more substances combine or break up (as in a relationship) to form new substances.Physical changes occur when objects undergo a change that does not change their chemical nature. A physical change involves a change in physical properties. Physical properties can be observed without changing the type of matter. Examples of physical properties include: texture, shape, size, color, odor, volume, mass, weight, and density.
BUT in Chemical Change ( or Chemical Reaction ) there would be change in the chemical nature of the material undergoing a Chemical Change with the production of new compounds.
Answer: Solution W and Y solution have more solubility than X and Z
Solutions are homogeneous mixtures of two or more components. By uniform mix we mean that its structure and properties are the same in the whole mix. Generally, the component which is present in the largest quantity is known as solvent. Solvent determines the physical condition in which the solution exists. In addition to the solvent, one or more component present in the solution is called solutes. In this unit we will only consider binary solutions (i.e., with two components)
The structure of the solution can be described by expressing its concentration. The latter can either be expressed qualitatively or quantitatively. For example, in qualitatively we can say that the solution is diluted (i.e., relatively small amounts of solubility) or it is concentrated (i.e., relatively rarely sighs). But in real life such details may be very confusing and thus require a quantitative description of the solution. There are several ways that we can quantitatively describe the concentration of solutions. (i) Mass Percentage (W / W): The mass percentage of a component of the solution is defined as: mass of the component = mass of the component in the solution = 100 Total mass of the solution .For example, if by mass A solution is described by 10% glucose in water, it means that 10 grams of glucose dissolved in 90 grams of water, resulting in 100 grams of solution. The concentration described by a large percentage of the population is usually used in industrial chemical applications. For example, the commercial bleaching solution contains 3.62 mass percentages of sodium hypochlorite in water. (ii) Volume Percentage (V / V): Volume Percentage is defined as: Total Volume of Component Volume 100 (component) Volume% of Component
Explanation:
Because the hamburger is still hot from the grill, the cheese melts because of that heat.