Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Answer:
<h2>
HIGHER & MORE OR LARGER OR MORE </h2>
HENCE, THE ANSWER IS A. :)
Explanation:
<em><u>#</u></em><em><u>CARRYONLEARNING</u></em>
<em><u>BRAINLIEST</u></em><em><u> </u></em><em><u> </u></em><em><u>PLEASE</u></em><em><u> </u></em><em><u>I </u></em><em><u>REALLY </u></em><em><u>NEED</u></em><em><u> </u></em><em><u>IT</u></em>
Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
While ice melts, it remains at 0 °C, and the liquid water that is formed with the latent heat of fusion is also at 0 °C. The heat of fusion for water at 0 °C is approximately 334 joules per gram, and the heat of vaporization at 100 °C is about 2,230 joules per gram. So it will be C