Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger
Answer:
Convex lens and convex mirrors are similar that
1. They have the same image characteristics at various object positions
2. They possess a positive focal length
3. Both their ray lines converge to a particular focal point
The momentum of an object is given by the product between its mass and its velocity:

where m is the mass and v the velocity.
For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is

So, the correct answer is B).
There is approximately 2.54 cm that equals to 1 inch. So your closet answer would be the first choice. :)
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617