1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
7

Is charging by contact the same as charging by conduction?

Physics
2 answers:
netineya [11]3 years ago
8 0

Answer:So, the difference between charging by induction and conduction comes down to the contact of the neutral object and the object used to charge it. Conduction requires direct contact, while induction does not.

Explanation:

Nostrana [21]3 years ago
3 0
No it’s not the same
You might be interested in
The current theory of the structure of the
Mariana [72]

Answers:

a) 2.82(10)^{21} kg

b) 1410 J

c) 36.62 m/s

Explanation:

<h3>a) Mass of the continent</h3>

Density \rho  is defined as a relation between mass m and volume V:

\rho=\frac{m}{V} (1)

Where:

\rho=2720 kg/m^{3} is the average density of the continent

m is the mass of the continent

V is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

V=(length)(width)(depth)=(5300 km)(5300 km)(37 km)=1,030,330,000 km^{3} \frac{(1000 m)^{3}}{1 km^{3}}=1.03933(10)^{18} m^{3}

Finding the mass:

m=\rho V (2)

m=(2720 kg/m^{3})(1.03933(10)^{18} m^{3}) (3)

m=2.82(10)^{21} kg (4) This is the mass of the continent

<h3>b) Kinetic energy of the continent</h3>

Kinetic energy K is given by the following equation:

K=\frac{1}{2}mv^{2} (5)

Where:

m=2.82(10)^{21} kg is the mass of the continent

v=4.8 \frac{cm}{year} \frac{1 m}{100 cm} \frac{1 year}{365 days} \frac{1 day}{24 hours} \frac{1 hour}{3600 s}=1(10)^{-9} m/s is the velocity of the continent

K=\frac{1}{2}(2.82(10)^{21} kg)(1(10)^{-9} m/s)^{2} (6)

K=1410 J (7) This is the kinetic energy of the continent

<h3>c) Speed of the jogger</h3>

If we have a jogger with mass m=77 kg and the same kinetic energy as that of the continent 1413 J, we can find its velocity by isolating v from (5):

v=\sqrt{\frac{2 K}{m}} (6)

v=\sqrt{\frac{2 (1413 J)}{77 kg}}

Finally:

v=36.62 m/s This is the speed of the jogger

5 0
3 years ago
When it comes to how ray lines are drawn, what makes the convex lens and concave mirror similar to each other?
Advocard [28]

Answer:

Convex lens and convex mirrors are similar that

1. They have the same image characteristics at various object positions

2. They possess a positive focal length

3. Both their ray lines converge to a particular focal point

4 0
2 years ago
What is the momentum of an object that is moving in a straight line at a speed of 10 m/s and has a mass of 10 kilograms?
Aleksandr-060686 [28]
The momentum of an object is given by the product between its mass and its velocity:
p=mv
where m is the mass and v the velocity.

For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is
p=mv=(10 kg)(10 m/s)=100 kg m/s
So, the correct answer is B).
8 0
3 years ago
About how many centimeters will make an inch?<br> 02<br> O 10<br> 100<br> 200
Tresset [83]
There is approximately 2.54 cm that equals to 1 inch. So your closet answer would be the first choice. :)
7 0
3 years ago
Read 2 more answers
A hockey player hits a rubber puck from one side of the rink to the other. It has a mass of .170 kg, and is hit at an initial sp
Dimas [21]

By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s

Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:

mass m =  0.170 kg

initial speed u = 6 m/s.

Distance covered s = 61 m

To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V

To do this, let us first calculate the kinetic energy at which the ball move.

K.E = 1/2mU^{2}

K.E = 1/2 x 0.17 x 6^{2}

K.E = 3.06 J

The work done on the ball is equal to the kinetic energy. That is,

W = K.E

But work done = Force x distance

F x S = K.E

F x 61 = 3.06

F = 3.06/61

F = 0.05 N

From here, we can calculate the acceleration of the ball from Newton second law

F = ma

0.05 = 0.17a

a = 0.05/0.17

a = 0.3 m/s^{2}

To calculate the final velocity, let us use third equation of motion.

V^{2} = U^{2} + 2as

V^{2}  = 6^{2} + 2 x 0.3 x 61

V^{2} = 36 + 36

V^{2} = 72

V = \sqrt{72}

V = 8.485 m/s

Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.

Learn more about dynamics here: brainly.com/question/402617

5 0
2 years ago
Other questions:
  • Describe and open, closed, and isolated system
    13·1 answer
  • How is the ionization energy, E, related to a group of elements?
    14·2 answers
  • calculate the momentum of 5.07 kg egg that is dropped from a roof and falls 2 seconds before hitting the ground.
    5·1 answer
  • A bowling ball has a mass of 5 kg. What happens to its momentum when its speed increases from 1 m/s to 2 m/s?
    12·1 answer
  • In addition to stand-alone discussion boards, all of these sites include discussion boards as part of their features except: ​
    13·1 answer
  • How does an inclined plane work? A A small input force is exerted over a long distance. B A large output force is exerted over a
    7·1 answer
  • When a moving car is brought to a stop with the brakes, its acceleration vector is 29. (a) in the same direction as its velocity
    6·1 answer
  • a person goes to his friends home at the speed of 30 km/h and comes back at the speed of 40 km/h. what was his average speed thr
    8·1 answer
  • What happens when you pay bills using a computer
    7·2 answers
  • A car has a weight of 25000 N and its brakes can apply a maximum force of 628 N to stop it. The car is initially moving at a spe
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!