Answer:
To calculate displacement, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your displacement is 0. In physics, displacement is represented by Δs.
Explanation:
hope helps
<span>Sea breeze can happen during hot summer days because of the
uneven heating rates of water and land.
The land surface heats up faster than the surface of the water during the
day. At this rate, the air above the
land grows warmer than the air atop the ocean. Warmer air is always lighter
than cooler air. As a consequence, warm air is pushed upward causing it to
rise. With this, warmer air rises over the land. As warm air rises over the
land, cooler air over the ocean flows over the land surface to change or
replace the rising warm air.</span>
Answer:
Radio waves have a wavelength between
and 
While,
X rays have a wavelength between 1m and 10km.
=> It is one of the condition of diffraction that the obstacle (coming in the way) must be comparable with the size of the wavelength.
=> This shows, that radio waves have a wavelength which is comparable with the size of buildings and can really easily diffract through it
=> While, X-rays are big enough to diffract through the wall.
So, if an X-ray technician stands behind a wall during the use of her machine, she will remain safe.
Air for a diver comes out of a high pressure tank at - Same- pressure compared to the water around the diver (metered by the regulator).
This means the lungs are inflated with - Highly pressurized- gas.
This does not adversely affect the diver when deep underwater, because the entire environment around the diver is at -Same - pressure.
If the diver suddenly surface, the air in the alveoli in the lungs will still be at - a higher - pressure compared to the air around the diver, which will be at - a lower - pressure.
The gas in the diver's lungs will - expand - and can damage the alveoli.
Answer:
After refraction at two parallel faces of a glass slab, a ray of light emerges in a direction parallel to the direction of incidence of white light on the slab. As rays of all colours emerge in the same direction (of incidence of white light), hence there is no dispersion, but only lateral displacement.