Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.
For any object thrown upwards where only the force of gravity is acting upon it, uses the following formula for the maximum height attained.
H= v²/2g, where g = 9.81 m/s²
There are two information of velocities are given. However, we use the 20 m/s information because this is the launch velocity. Hence, the solution is as follows:
H = (20 m/s)²/2(9.81 m/s²)
<em>H = 20.4 m</em>
Power is defined as
P = I*V
where I is the current and V is the voltage
Ohm's law gives us the relation betwen Voltage and current in a resistive component
V = I*R , Then
P = V² / R
We solve for R,
R = (110 V)²/ 75W = 161.33 ohms
Answer:
The magnetic force on a current-carrying wire is perpendicular to both the wire and the magnetic field with direction given by the right hand rule.
Answer:
26.5 m
Explanation:
= initial position of the object = 75.2 m
= final position of the object
= displacement of the object = - 48.7
Displacement of the object is given as the difference of final and initial position of the object

Inserting the values
- 48.7 = x - 75.2
x = 26.5 m