D. F=ma
F is for force, and that equals two things, M for mass and A for acceleration. When mass is accelerated, it gives you force. Force equals multiplying mass and its acceleration.
 
        
             
        
        
        
Answer:
a
The number of fringe is  z  = 3 fringes
b 
 The  ratio is 
Explanation:
a 
  From the question we are told that 
         The wavelength is  
         The distance between the slit is  
         The width of the slit is  
let  z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is  and this mathematically represented as 
              
Substituting values
               
  
              z  = 3 fringes 
 b 
    From the question  we are told that the order  of the bright fringe is  n = 3
    Generally the intensity of  a pattern  is mathematically represented as 
                  ![I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%5B%5Cfrac%7B%5Cpi%20d%20sin%20%5Ctheta%7D%7B%5Clambda%7D%20%5D%5B%5Cfrac%7Bsin%20%28%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%20%7D%20%29%7D%7B%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%7D%20%7D%20%5D)
Where  is the intensity  of the  central fringe
 is the intensity  of the  central fringe
  And  Generally  
                ![I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20co%5E2%20%5B%20%5Cfrac%7B%5Cpi%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%5D%20%5B%5Cfrac%7B%5Cfrac%7Bsin%20%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%7D%7B%5Cfrac%7B%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
                ![I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%28n%20%5Cpi%29%5B%5Cfrac%7B%5Cfrac%7Bsin%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%29%7D%7B%20%5Cfrac%7B%20%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%20%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
                ![I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%283%20%5Cpi%29%20%5B%5Cfrac%7Bsin%20%28%5Cfrac%7B3%20%5Cpi%20%7D%7B6%7D%20%29%7D%7B%5Cfrac%7B3%20%5Cpi%7D%7B6%7D%20%7D%20%5D)
                 
                   
 
        
             
        
        
        
Answer:
The one in the middle
Explanation: i listened to the other person and i got it wrong, this is the answer for edge2020 sience review on energy!!!!
trust me its the middle one!!!!!
And everyone if ur not sure, like 100% sure about an answer dont answer at all cuz for 1: ur taking up a spot for others to answer. for 2: you could make people wrong. And for 3: its annoying. And 4: it makes stuff like this happen! 
<u>NOT ARGUEING IM JUST PUTTING MY THOUGHTS AND OPINIONS OUT THERE ;)</u><em> many thanks.</em>
 
        
                    
             
        
        
        
How do you find instantaneous velocity 
Select a point on a distance-time curve graph. Draw a tangent to the curve at that point. Tangent -> hypotenuse of right angled triangle. Opp/adjacent in graph units is vel at that point -> in distance and/or time