Answer:
Step-by-step explanation:
Hello!
The five-number summary comprehends the minimum and maximum values, the 1st and 3rd quartiles and the median.
1st step: is to arrange the data sets from least to greatest.
Sherelle:
26 39 56 58 60 62 65 66 66 68 71 72 72 73 74 75 81 83 84 85
Venita:
44 45 51 51 53 53 55 57 58 62 65 66 69 69 70 73 75 77 78 79
2nd step: To calculate each quartile you have to determine their position and then identify which observation sits in that position:
Quartile 1:
PosQ₁: n/4= 20/4= 5
Quartile 2 (Median)
PosMe: n/2= 20/2= 10
Quartile 3
PosQ₃: n*(3/4)= 20*(3/4)= 15
Since both samples have the same size, the 1st quartile will be the fifth observation of each sample, the median will be the tenth observation and the 3rd quartile will be the fifteenth.
Sherelle:
Q₁: 60
Me: 68
Q₃: 74
Minimum: 26
Maximum: 85
Venita:
Q₁: 53
Me: 62
Q₃: 70
Minimum: 44
Maximum: 79
I hope this helps!
let's change some the 0.1 to say 1/10, just the fraction version of it.

![\bf \cfrac{-10x-1}{-10x^3-x^2}\implies \cfrac{-10\left( \frac{1}{10} \right)-1}{-10\left( \frac{1}{10} \right)^3-\left( \frac{1}{10} \right)^2}\implies \cfrac{-1-1}{-\frac{1}{100}-\frac{1}{100}}\implies \cfrac{-2}{\frac{-2}{100}} \\\\\\ \cfrac{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\cdot \cfrac{100}{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 100](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B-10x-1%7D%7B-10x%5E3-x%5E2%7D%5Cimplies%20%5Ccfrac%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29-1%7D%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E3-%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Ccfrac%7B-1-1%7D%7B-%5Cfrac%7B1%7D%7B100%7D-%5Cfrac%7B1%7D%7B100%7D%7D%5Cimplies%20%5Ccfrac%7B-2%7D%7B%5Cfrac%7B-2%7D%7B100%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B100%7D%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Cimplies%20100)
when checking an absolute value expression, we do the one-sided limits, since an absolute value expression is in effect a piecewise function with ± versions, so for the limit from the left we check the negative version.
Step-by-step explanation:
Hope it helps you in your learning process.
Answer:
ok I can't do it, but maybe someone else will help you
5) 2 3/35
6) 8 5/8
7) 9/40
8) 5 7/10