IF:
Number of cells:

DNA lenght:

Distance from Earth to Sun:

Then:
a) <span>Over how many miles would the total DNA from the average human stretch?
The answer is product of multiplication of the number of cells (C) and the DNA length (D):
Total DNA: </span>

⇒

⇒

⇒
The total DNA from the average human will stretch 
b) How many times would the total DNA from the average human stretch from Earth to the Sun and back?
The answer is concluded from the ratio of the total DNA length (T) and the <em>twice </em>(because of stretch to the Sun and back, thus, <em>two directions</em>) of distance from <span>Earth to the Sun (ES) and :
Ratio: </span>

⇒

⇒

⇒

<span> ⇒

</span><span> ⇒ [tex]R = 667.7
</span>
Thus, 667,7 times will the <span>
total DNA from the average human stretch from Earth to the Sun and back.</span>
I think it differs since the technology used before is kind of analog and the technology used now is kind of upgraded which has a higher storage capacity
Biological augmentation, bioremediation , or reforestation are names for the method.
Answer:
n a population, more individuals are born than can survive. The available resources in nature are finite (food, water, space, etc.) and the environment is not able to support unlimited growth of a population. This causes an inevitable struggle for existence among individuals (continual struggle for existence).Explanation:
Answer:
The part of the DNA molecule that varies among DNA molecules is nitrogenous bases.