Answer:
y = 1/2x - 4
Step-by-step explanation:
If two lines are perpendicular to each other, they have opposite slopes.
The first line is y = -2x + 8. Its slope is -2. A line perpendicular to this one will have a slope of 1/2.
Plug this value (1/2) into your standard point-slope equation of y = mx + b.
y = 1/2x + b
To find b, we want to plug in a value that we know is on this line: in this case, it is (4, -2). Plug in the x and y values into the x and y of the standard equation.
-2 = 1/2(4) + b
To find b, multiply the slope and the input of x (4)
-2 = 2 + b
Now, subtract 2 from both sides to isolate b.
-4 = b
Plug this into your standard equation.
y = 1/2x - 4
This equation is perpendicular to your given equation (y = -2x + 8) and contains point (4, -2)
Hope this helps!
Answer:
y=5/4x + 2
Step-by-step explanation:
Ok so in the point (-4,-3) -4 is x and -3 is y. Now, since you have the slope, 5/4, you can put it into an equation. -3= 5/4(-4) + b. When you multiply 5/4 x -4 you get -3=-5 + b so then add 5 to both sides to get rid of it and you have 2=b. And your equation would be y=5/4x + 2
Answer:
Any one of these three works:
plane MOU
plane MNU
plane NOU
Step-by-step explanation:
A plane can be named by a single letter, such as L in this problem, or by any three non-collinear points that lie on the plane. Non-collinear points are points that do not all lie in a single line.
Points M, N, O, and U lie on plane L, so you can choose any 3 of the 4 points to name the plane with, but make sure all 3 points are non-collinear.
To name plane L with points, you cannot use points MNO together since they are collinear, but you can name it using point U plus any two of the points M, N, and O.
plane L can be named
plane MOU
plane MNU
plane NOU
Do not name it plane MNO