Answer:
The number A(t) of pounds of salt in the tank at time 't' is;
![{A(t)}= -2,100 \times e^{\dfrac{-t}{100} } + 2,100](https://tex.z-dn.net/?f=%7BA%28t%29%7D%3D%20-2%2C100%20%5Ctimes%20e%5E%7B%5Cdfrac%7B-t%7D%7B100%7D%20%7D%20%2B%202%2C100)
Step-by-step explanation:
In the question, we have;
The volume of pure water initially in the tank = 700 gal
The concentration of brine pumped into the tank = 3 pounds per gallon
The rate at which the brine is pumped into the tank, = 7 gal/min
The rate at which the well mixed solution is pumped out = The same 7 gal/min
The number of pounds of salt in the tank at time 't' is found as follows;
The rate of change in A(t) with time = The rate of salt input - The rate of salt output
![The \ rate \ of \ change \ in \ A(t) \ with \ time = \dfrac{dA}{dt}](https://tex.z-dn.net/?f=The%20%5C%20rate%20%5C%20%20of%20%20%5C%20change%20%5C%20%20in%20%20%5C%20A%28t%29%20%20%5C%20with%20%5C%20%20time%20%3D%20%5Cdfrac%7BdA%7D%7Bdt%7D)
The rate of salt input = 7 gal/min × 3 lbs/gal = 21 lbs/min
The rate of salt output = (A(t)/700) lb/gal × 7 gal/min = (A(t)/100) lb/min
Therefore, we have;
![\dfrac{dA}{dt} = 21 - \dfrac{A(t)}{100}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%20%3D%2021%20-%20%5Cdfrac%7BA%28t%29%7D%7B100%7D)
Therefore;
![\dfrac{dA}{dt} + \dfrac{A(t)}{100}= 21](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%20%2B%20%5Cdfrac%7BA%28t%29%7D%7B100%7D%3D%2021)
The integrating factor is ![e^{\int\limits {\frac{1}{100} } \, dx } = e^{\frac{x}{100} }](https://tex.z-dn.net/?f=e%5E%7B%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7B100%7D%20%7D%20%5C%2C%20dx%20%7D%20%3D%20e%5E%7B%5Cfrac%7Bx%7D%7B100%7D%20%7D)
![e^{\dfrac{t}{100} } \times \dfrac{dA}{dt} + e^{\dfrac{t}{100} } \times\dfrac{A(t)}{100}= e^{\dfrac{t}{100} } \times21](https://tex.z-dn.net/?f=e%5E%7B%5Cdfrac%7Bt%7D%7B100%7D%20%7D%20%5Ctimes%20%5Cdfrac%7BdA%7D%7Bdt%7D%20%2B%20e%5E%7B%5Cdfrac%7Bt%7D%7B100%7D%20%7D%20%5Ctimes%5Cdfrac%7BA%28t%29%7D%7B100%7D%3D%20e%5E%7B%5Cdfrac%7Bt%7D%7B100%7D%20%7D%20%5Ctimes21)
![\dfrac{d}{dt} \left[ e^{\dfrac{t}{100} } \times{A(t)}{} \right]= e^{\dfrac{t}{100} } \times21](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5B%20e%5E%7B%5Cdfrac%7Bt%7D%7B100%7D%20%7D%20%5Ctimes%7BA%28t%29%7D%7B%7D%20%5Cright%5D%3D%20e%5E%7B%5Cdfrac%7Bt%7D%7B100%7D%20%7D%20%5Ctimes21)
Using an online tool, we get;
![{A(t)}= c_1 \times e^{\dfrac{-t}{100} } + 2,100](https://tex.z-dn.net/?f=%7BA%28t%29%7D%3D%20c_1%20%5Ctimes%20e%5E%7B%5Cdfrac%7B-t%7D%7B100%7D%20%7D%20%2B%202%2C100)
At time t = 0, A(t) = 0
We get;
![0= c_1 \times e^{\dfrac{-0}{100} } + 2,100](https://tex.z-dn.net/?f=0%3D%20c_1%20%5Ctimes%20e%5E%7B%5Cdfrac%7B-0%7D%7B100%7D%20%7D%20%2B%202%2C100)
c₁ = -2,100
Therefore, the number A(t) of pounds of salt in the tank at time 't' is given as follows;
![{A(t)}= -2,100 \times e^{\dfrac{-t}{100} } + 2,100](https://tex.z-dn.net/?f=%7BA%28t%29%7D%3D%20-2%2C100%20%5Ctimes%20e%5E%7B%5Cdfrac%7B-t%7D%7B100%7D%20%7D%20%2B%202%2C100)