y-intercept: (0, 1)
Line of symmetry calculation: x = -b/2a = -(-2)/2(2) = 0.5
Line of symmetry: x = 0.5
Open UP or DOWN: Opens UP
Min or Max: Min
Vertex: (0.5, 0.5)
Domain: {x|x ∈ ℝ}
Range: {y|y ≥ 1/2}
6a - (b - (3a - (2b + c + 4a - (a + 2b - c))))
6a - (b - (3a - (2b + c + 4a - a - 2b + c)))
6a - (b - (3a - (2b - 2b + 4a - a + c + c)))
6a - (b - (3a - (3a + 2c)))
6a - (b - (3a - 3a - 3c))
6a - (b - 3a + 3a + 3c)
6a - (b + 3c)
6a - b - 3c
x³ + x² - 25x - 25
x²(x) + x²(1) - 25(x) - 25(1)
x²(x + 1) - 25(x + 1)
(x² - 25)(x + 1)
(x² - 5x + 5x - 25)(x + 1)
(x(x) - x(5) + 5(x) - 5(5))(x + 1)
(x(x - 5) + 5(x - 5))(x + 1)
(x + 5)(x - 5)(x + 1)
36x² + 60x + 25
36x² + 30x + 30x + 25
6x(6x) + 6x(5) + 5(6x) + 5(5)
6x(6x + 5) + 5(6x + 5)
(6x + 5)(6x + 5)
(6x + 5)²
<span>Equation:
train distance + plane distance = 1300 miles
50x + 275x = 1300
x(325) = 1300
x = 4 hours
4x2=8
---
The trip took 8 hrs.</span>
X²+15x+36<0
at first solve quadratic equation
D=b²-4ac= 225-4*1*36= 81
x=(-b+/-√D)/2a
x=(-15+/-√81)/2= (-15+/-9)/2
x1=(-15-9)/2=-12
x2=(-15+9)/2=-3
we can write x²+15x+36<0 as (x+12)(x+3)<0
(x+12)(x+3)<0 can be 2 cases, because for product to be negative one factor should be negative , and second factor should be positive
1 case) x+12<0, and x+3>0,
x<-12, and x>-3
(-∞, -12) and(-3,∞) gives empty set
or second case) x+12>0 and x+3<0
x>-12 and x<-3
(-12,∞) and (-∞,-3) they are crossing , so (-12, -3) is a solution of this inequality