1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
9

Verify that each equation is an identity (1 - sin^(2)((x)/(2)))/(1+sin^(2)((x)/(2)))= (1+cosx)/(3-cosX)

Mathematics
1 answer:
Allisa [31]3 years ago
3 0

Answer:

Given that we have;

sin \left (\dfrac{x}{2} \right ) = \sqrt{\dfrac{1 - cos (x)}{2} }

By the application of the law of indices and algebraic process of adding a and subtracting a fraction from a whole number, we have;

\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( \dfrac{1 + cos (x)}{2} \right)}{\left (\dfrac{3 - cos (x)}{2} \right ) }  =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}

Step-by-step explanation:

An identity is a valid or true equation for all variable values

The given equation is presented as follows;

\dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}

From trigonometric identities, we have;

sin \left (\dfrac{x}{2} \right ) = \sqrt{\dfrac{1 - cos (x)}{2} }

\therefore sin^2 \left (\dfrac{x}{2} \right ) = \dfrac{1 - cos (x)}{2}

1 -  sin^2 \left (\dfrac{x}{2} \right ) = 1 - \dfrac{1 - cos (x)}{2} = \dfrac{2 - (1 - cos (x))}{2} = \dfrac{1 + cos (x))}{2}

1 +  sin^2 \left (\dfrac{x}{2} \right ) = 1 + \dfrac{1 - cos (x)}{2} = \dfrac{2 + 1 - cos (x))}{2} = \dfrac{3 - cos (x))}{2}

\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( \dfrac{1 + cos (x)}{2} \right)}{\left (\dfrac{3 - cos (x)}{2} \right ) }  =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}

\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}

You might be interested in
Mike built a model of a 42 ft building using a scale of 2 cm = 3 ft. What is the height of the model?
Blababa [14]
Ok so important numbers 42 ft, 2cm, 3 ft and lets take height as x

if 2cm=3ft than x cm= 42 ft
2 = 3
-------
x= 42
cross multiply divide
(42)2/3
84/3
28 
5 0
4 years ago
What is the measure in radians for the central angle of a circle whose radius is 8 cm and intercepted arc length is 7.2 cm?
Monica [59]

Answer:

Para poder definir los radianes, es necesario introducir el concepto de ángulo central. Un ángulo central es un ángulo cuyo vértice está en el centro de un círculo. En el círculo siguiente, el centro es el punto O, la longitud del radio es r, y es el ángulo central y 30 grados equivale a vil.

Step-by-step explanation:

5 0
3 years ago
In the least-squares line y = 5 − 9x, what is the value of the slope?
Sonbull [250]
Just convert to standard form using Ax + By = C = -(A/B) where A = -9 and B = 5.
m = -9/1 which translates to -9.
Our slope is -9.
6 0
3 years ago
Read 2 more answers
A book is opened, and the PRODUCT of the two visible page numbers is found to be 306.
prohojiy [21]
X(x+1) = 306

Distribute the x

x² + x = 306

move all terms to the left and set the equal to zero (be sure to change the sign for all terms moved)

x² + x - 306 = 0
x         -17
x           18

(x - 17)(x + 18)

x =  -18, 17

pg. 17 & 18 is visible

hope this helps

8 0
3 years ago
Read 2 more answers
Solve for x: -1< x+3 <5
sergey [27]

Answer:

Im not sure but i belive the answer is −4<x<2

6 0
3 years ago
Other questions:
  • Evaluate the expession.<br> 9i/3i<br><br><br> A. 3<br> B. 6<br> C. 60,480<br> D 362,874
    12·2 answers
  • 445,473 divided by 316 = ?
    9·1 answer
  • Q # 25 find the distance between the two points
    10·1 answer
  • Explain how to use a number line to find the opposites of the intergers 3 units away from -7
    14·1 answer
  • Find the value of x in the trapezoid below. Show equations and all work that leads to your answer.
    5·1 answer
  • Can someone answer this
    10·1 answer
  • Use the geometric mean (altitude) theorem. What is the
    10·1 answer
  • Are these parallel, perpendicular, or neither? 2x-y= -1 and 4x-2y=6
    11·1 answer
  • PLEASE HELP?
    12·1 answer
  • 14 minus 40 divided by -2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!