Easy
g(x+a)
sub x+a for every x in equation
g(x+a)=-5(x+a)^2-3(x+a)+2
g(x+a)=-5(x²+2xa+a²)-3x-3a+2
g(x+a)=-5x²-10xa-5a²-3x-3a+2
so now minus g(x)
g(x+a)-g(x)=
-5x²-10xa-5a²-3x-3a+2-(-5x²-3x+2)=
-5x²-10xa-5a²-3x-3a+2+5x²+3x-2=
-5x²+5x²-10xa-5a²-3x+3x-3a+2-2=
-10xa-5a²-3a
g(x+a)-g(x)=-5a²-10xa-3a
Answer:
Undefined or Infinity
Step-by-step explanation:
(x1,y1)=(-11,8)
(x2,y2)=(-11,-17)
Slope = (y2-y1)/(x2-x1)
= (-17-8)/(-11-(-11))
= -25/0
= Undefined
The first one.............
Answer:
a) d²y/dx² = ½ x + y − ½
b) Relative minimum
Step-by-step explanation:
a) Take the derivative with respect to x.
dy/dx = ½ x + y − 1
d²y/dx² = ½ + dy/dx
d²y/dx² = ½ + (½ x + y − 1)
d²y/dx² = ½ x + y − ½
b) At (0, 1), the first and second derivatives are:
dy/dx = ½ (0) + (1) − 1
dy/dx = 0
d²y/dx² = ½ (0) + (1) − ½
d²y/dx² = ½
The first derivative is 0, and the second derivative is positive (concave up). Therefore, the point is a relative minimum.