Slope intercept form is y = mx + b...ur slope will be in the m position and ur y int will be in the b position
examples : slope = 2 , (1,3)....x = 1 and y = 3
y = mx + b
slope(m) = 2
(1,3)...x = 1 and y = 3
now we sub and find b, the y int
3 = 2(1) + b
3 = 2 + b
3 - 2 = b
1 = b
so in slope intercept form, ur equation is : y = 2x + 1
================
another example : slope = 3 , (-2,-4)
y = mx + b
slope(m) = 3
(-2,-4)...x = -2 and y = -4
now sub and find b, the y int
-4 = 3(-2) + b
-4 = - 6 + b
-4 + 6 = b
2 = b
so ur equation is : y = 3x + 2
Step-by-step explanation:
Enter a problem...
Algebra Examples
Popular Problems
Algebra
Expand using the Binomial Theorem (3x+2)^4
(3x+2)4(3x+2)4
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
4∑k=04!(4−k)!k!⋅(3x)4−k⋅(2)k∑k=044!(4-k)!k!⋅(3x)4-k⋅(2)k
Expand the summation.
4!(4−0)!0!⋅(3x)4−0⋅(2)0+4!(4−1)!1!⋅(3x)4−1⋅(2)+4!(4−2)!2!⋅(3x)4−2⋅(2)2+4!(4−3)!3!⋅(3x)4−3⋅(2)3+4!(4−4)!4!⋅(3x)4−4⋅(2)44!(4-0)!0!⋅(3x)4-0⋅(2)0+4!(4-1)!1!⋅(3x)4-1⋅(2)+4!(4-2)!2!⋅(3x)4-2⋅(2)2+4!(4-3)!3!⋅(3x)4-3⋅(2)3+4!(4-4)!4!⋅(3x)4-4⋅(2)4
Simplify the exponents for each term of the expansion.
1⋅(3x)4⋅(2)0+4
Hope this helps!
The rule of the function is to multiply the input by 3, since one yard is equal in length to three feet.
So, if the input is 15.4, the output will be

Hope this helps! have a nice day/night