Answer:
- slope = 3/2
- y-intercept = 3
- x-intercept = -2
Step-by-step explanation:
The slope is the coefficient of x when the equation is of the form ...
y = (something).
Here, we can put the equation in that form by subtracting 12x and dividing by the coefficient of y:
12x -8y = -24 . . . . . given
-8y = -12x -24 . . . . .subtract 12x
y = 3/2x +3 . . . . . . . divide by -8
This is the "slope-intercept" form of the equation. Generically, it is written ...
y = mx + b . . . . . . where m is the slope and b is the y-intercept
So, the above equation answers two of your questions:
slope = 3/2
y-intercept = 3
__
The x-intercept is found fairly easily from the original equation by setting y=0:
12x = -24
x = -24/12 = -2 . . . . . the x-intercept
_____
A graph of the equation can also show you these things. The graph shows a rise of 3 units for a run of 2, so the slope is rise/run = 3/2. The line crosses the axes at x=-2 and y=3, the intercepts.
Answer:
There are no solutions.
Step-by-step explanation:
3=t+11.5-t
3=11.5 (does not work)
Answer:
Step-by-step explanation:
Confidence interval for the difference in the two proportions is written as
Difference in sample proportions ± margin of error
Sample proportion, p= x/n
Where x = number of success
n = number of samples
For the men,
x = 318
n1 = 520
p1 = 318/520 = 0.61
For the women
x = 379
n2 = 460
p2 = 379/460 = 0.82
Margin of error = z√[p1(1 - p1)/n1 + p2(1 - p2)/n2]
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.025 = 0.975
The z score corresponding to the area on the z table is 1.96. Thus, confidence level of 95% is 1.96
Margin of error = 1.96 × √[0.61(1 - 0.61)/520 + 0.82(1 - 0.82)/460]
= 1.96 × √0.0004575 + 0.00032086957)
= 0.055
Confidence interval = 0.61 - 0.82 ± 0.055
= - 0.21 ± 0.055
Answer:
Step-by-step explanation:
you need to use the proportions
x=(3*5)/8=15/8
For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46