<h2>Answer </h2>
Amount (A) = P[1 + (r/100)]n
Principal (P) = ₹ 26400
Time period (n) = 2 years 4 months
Rate % (R) = 15% compounded annually
<h3>Steps </h3>
First, we will calculate Compound Interest (C.I) for the period of 2 years
A = P[1 + (r/100)]n
= 26400[1 + (15/100)]²
= 26400[(100/100) + (15/100)]²
= 26400 × 115/100 × 115/100
= 26400 × 23/20 × 23/20
= 26400 × 1.3225
= 34914
C.I. = A - P
= 34914 - 26400
= 8514
Now, we will find Simple Interest (S.I) for the period of 4 months
Principal for 4 months after C.I. for 2 years = ₹ 34,914
<h3>We know that ,</h3>
S.I = PRT/100
Here T = 4 months = 4/12 years = 1/3 years
S.I. for 4 months = (1/3) × 34914 × (15/100)
= (1/3) × 34914 × (3/20)
= 34914/20
= 1745.70
Total interest for 2 years 4 months = 8514 + 1745.70
= 10259.70
Total amount for 2 years 4 months = 26400 + 10259.70
= ₹ 36659.70
<h3>
So , the correct answer is ₹ 36659.70 . </h3>
Answer:
See below ~
Step-by-step explanation:
⇒ 65 = 65 + y (alternate exterior angles)
⇒ y = 0
⇒ 4(12x + 1) + 15 = 180 - 65 - y (Linear angles)
⇒ 48x + 4 = 100 - 0
⇒ 48x = 96
⇒ x = 2
⇒ 3(7z + 6) + 5(5z + 1) = 115 (Both the angles are equal "alt. ext. angles")
⇒ 21z + 18 + 25z + 5 = 115
⇒ 46z + 23 = 115
⇒ 46z = 92
⇒ z = 2
Answer:
dy/dx = -b/a cot α
Step-by-step explanation:
x² / a² + y² / b² = 1
Take derivative with respect to x.
2x / a² + 2y / b² dy/dx = 0
2y / b² dy/dx = -2x / a²
dy/dx = -b²x / (a²y)
Substitute:
dy/dx = -b²a cos α / (a²b sin α)
dy/dx = -b cos α / (a sin α)
dy/dx = -b/a cot α
1.
(x/2) - 7 = 11
2.
2x + 7 = 27
3.
2x - 5 = 25
Hope this helped!! (: