Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s
Answer:
hello your question is incomplete attached below is the complete question
answer : attached below
Explanation:
let ; x(t) be a real value signal for x ( jw ) = 0 , |w| > 200
g(t) = x ( t ) sin ( 2000 

next we apply Fourier transform
attached below is the remaining part of the solution
Answer:
touching
Explanation:
The backrest of the seat should be tilted back ever so slightly, and when turning the steering wheel your shoulders should remain in contact with the seat – rather than hunched forward.
Answer:
a) 159.07 MPa
b) 10.45 MPa
c) 79.535 MPa
Explanation:
Given data :
length of cantilever beam = 1.5m
outer width and height = 100 mm
wall thickness = 8mm
uniform load carried by beam along entire length= 6.5 kN/m
concentrated force at free end = 4kN
first we determine these values :
Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m
Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N
A) determine max bending stress
б =
=
= 159.07 MPa
B) Determine max transverse shear stress
attached below
ζ = 10.45 MPa
C) Determine max shear stress in the beam
This occurs at the top of the beam or at the centroidal axis
hence max stress in the beam = 159.07 / 2 = 79.535 MPa
attached below is the remaining solution