I can help you, but what are the options that were given to you?
Answer:
The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.
Explanation:
The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform. In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.
Answer:
Using python
num_boys = int(input("Enter number of boys :"))
num_girls = int(input("Enter number of girls :"))
budget = int(input("Enter the number of dollars spent per school year :"))
try:
dollarperstudent = budget/(num_boys+num_girls)
print("Dollar spent per student : "+str(dollarperstudent))#final result
except ZeroDivisionError:
print("unavailable")
Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is
