1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
8

Sam constructs a circuit, connects a lead acid battery of 2 V to a lamp of resistance 3 Ω and places an ammeter across it. What

must be the reading of the ammeter?
A.
0.66 A
B.
0.5 A
C.
0.54 A
D.
0.61 A
Engineering
2 answers:
Anon25 [30]3 years ago
8 0
It’s A because voltage equals current times resistance
frosja888 [35]3 years ago
4 0

Answer:

A. 0.66 Amps

Explanation:

Using ohms law, we can say that Voltage is equivalent to Current times Resistance.  We are given the voltage and the resistance of the circuit, so we simply need to find the current.

V = IR

Solve for I, where V = 2volts and R = 3ohms.

V = IR

V * 1/R = I * R * 1/R

I = V/R

I = 2/3 Amps

Hence, we should choose option A, 0.66 Amps for the current in this simple circuit.

Cheers.

You might be interested in
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Briefly discuss if it would be better to operate with pumps in parallel or series and how your answer would change as the steepn
Aleksandr [31]

Answer:

1) In series, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) In parallel, the combined head and volume flow will move along the system curve from point 1 to point 3.

Explanation:

1) Pump in series:

When two or more pumps are connected in series, their resulting pump performance curve will be obtained by adding their respective heads at the same flow rate as shown in the first diagram attached.

In the first diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3.

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the head of two identical pumps connected in series is twice the head of a single pump flowing at the same rate.

- Point 3 is the point where the system is operating when both pumps are running.

Now, since the flowrate is constant, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) Pump in parallel:

When two or more pumps are connected in parallel, their resulting pump performance curve will be obtained by adding their respective flow rates at same head as shown in the second diagram attached.

In the second diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the flow rate of two identical pumps connected in series is twice the flow rate of a single pump.

- Point 3 is the point where the system is operating when both pumps are running.

In this case, the combined head and volume flow will move along the system curve from point 1 to point 3.

5 0
3 years ago
6. What types of injuries can occur in an electronics lab and how can they be prevented?
marysya [2.9K]

Answer:

The most common injuries in a chemistry lab is making a fire, heat burns, chemical burns, cuts and scrapes, contamination, inhalation, and spills and breaks.

1.) You can prevent making a fire by making sure you close and seal flammable materials.

2.) You can prevent heat burns by teaching the students how to properly use tongs,water baths, and other cooling equipment. 

3.) You can prevent chemical burns by treating the chemicals with caution, measure carefully, and use the approved containers.

4.) You can prevent cuts and scrapes by telling the students how to use the blades safely, and also when they are disposing broken or sharp items they should know how to wrap them up so no one else will get hurt. 

5.) You can prevent contamination by washing your hands, protect their clothing and skin with a lab coat or a lab apron, gloves and glasses, and cleaning your area where the germs of the chemicals were so no one will become.

6.) You can prevent inhalation by opening up windows, using ventilation fans, and using an equipment that measures the amount of gas emission in a room.

7.) Finally, you can prevent spills and breaks by telling the students what will happen if anything spills, and tell them to clean up.  

8 0
3 years ago
Am I alive I really need to know?
Nesterboy [21]
Hell no,cause i’m not
5 0
3 years ago
A sheet of steel 1.5 mm thick has nitrogen (N2) atmospheres on both sides at 1200°C and is permitted to achieve steady-state dif
Gelneren [198K]

Answer:

do the wam wam

Explanation:

3 0
3 years ago
Other questions:
  • What is CQ Thread Ball Valves​
    10·2 answers
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressur
    13·1 answer
  • A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is λ/30, and the loop is connect
    15·1 answer
  • Air expands through an ideal turbine from 1 MPa, 900 K to 0.1 MPa, 500K. The inlet velocity is small compared to the exit veloci
    10·1 answer
  • A rectangular channel 2 m wide carries 3 m3 /s of water at a depth of 1.2 m. If an obstruction 40 cm wide is placed in the middl
    12·1 answer
  • Identify SIX (6) objectives of maintenance.<br>​
    5·1 answer
  • Force = 33 newtons
    7·1 answer
  • Ppman2000 Aye Get On Treasure Quest and Join Masons Kingdom :D
    10·1 answer
  • A large building will need several different types of workmen to install and repair pipes for water, heating,
    10·1 answer
  • EverFi future smart pie chart
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!