The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
The decomposition time : 7.69 min ≈ 7.7 min
<h3>Further explanation</h3>
Given
rate constant : 0.029/min
a concentration of 0.050 mol L to a concentration of 0.040 mol L
Required
the decomposition time
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time
For first-order reaction :
[A]=[Ao]e^(-kt)
or
ln[A]=-kt+ln(A0)
Input the value :
ln(0.040)=-(0.029)t+ln(0.050)
-3.219 = -0.029t -2.996
-0.223 =-0.029t
t=7.69 minutes
Answer:
A fluid is a medium that has a defined mass and volume, but no fixed shape, at a constant temperature and pressure. This may include gases, liquids, plasmas, and to some extent plastic solids. A fluid can flow and deform, preventing it from carrying loads in a static equilibrium. A fluid is always compressible and internal frictional forces always occur due to the viscosity of the fluid.
The half life equation is -->P(t) = Pi (0.5) ^ (t/c)
c is equal to the element to reach its half-life (5 seconds)t is equal to the duration of time the element is expose to (20 seconds)Pi is the initial amount (340)0.5 is the base of this exponential function to represent half-life.P(t) is the expression for the function of time
P(20) = 340 (0.5)^20/5P(20) = 340 (0.5) ^4P(20)= 21.25 grams
Fraction = P(t)/Pi = P(20)/Pi =21.25/340 =1/16
Therefore, when given 20 seconds, 340 grams of Fluorine-21 will degrade to 21.25 grams OR 1/16 of its original mass.
Hope this method helps! (This is my answer btw, I think you may have accidentally posted twice?)