Answer:
Conversion factor is 6.022 ×10^23 molecules/mole.
Number of moles is 5.845 moles
Explanation:
We are given;
3.52 × 10^24 molecules
Required to determine the conversion factor\
We know that according to the Avogadro's constant;
1 mole of a compound contains 6.022 ×10^23 particles
Therefore, 1 mole of a molecular compound contains 6.022 ×10^23 molecules.
Thus, the conversion factor in this case would be 6.022 ×10^23 molecules/mole.
Such that; 3.52 × 10^24 molecules are equivalent to;
= 3.52 × 10^24 molecules ÷ 6.022 ×10^23 molecules/mole.
=5.845 moles
Thus, the conversion factor is 6.022 ×10^23 molecules/mole.
Number of moles is 5.845 moles
Given :
Molarity of acetic acid solution, M = 0.10 M.
pKa of acetic acid, pKa = 4.75 .
To Find :
Percentage dissociation of 0.10 M solution of acetic acid.
Solution :
We know, 
Taking antilog both side, we get :

Since, acetic acid has 1 hydrogen atom to loose , so it is a monoprotic acid.
Now, percentage dissociation of monoprotic acid is given by :

Hence, this is the required solution.
Answer:
Q = -811440 J
Explanation:
Given data:
Mass of oil = 2.76 Kg (2.76× 1000 = 2760 g)
Initial temperature = 191 °C
Final temperature = 23°C
Specific heat capacity of oil = 1.75 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 23°C - 191 °C
ΔT = -168°C
Q = 2760 g ×1.75 J/g.°C ×-168°C
Q = -811440 J
Negative sign show heat is released.
Answer:
3. Judgement may be affected by what we already think is true (prior knowledge).
Explanation:
This statement is the correct answer because someone could be bias. Due to biases, prior knowledge may be incorrect and our conclusion may be wrong if you don't focus on the data given.