Answer:
−10 < x < 35 and 0 < y ≤ 38
Step-by-step explanation:
Options
(A) (9,0) (B) (-2,20) (C) (-5,2) (D) (0,-9)
Answer:
(B) (-2,20)
Step-by-step explanation:
Given the objective function, C=3x-4y
The vertex at which C is minimized will be the point (x,y) at which the expression gives the lowest value.
<u>Option A </u>
At (9,0), x=9, y=0
C=3(9)-4(0)=27-0
C=27
<u>Option B </u>
At (-2,20), x=-2, y=20
C=3(-2)-4(20)=-6-80
C=-86
<u>Option C</u>
At (-5,2), x=-5, y=2
C=3(-5)-4(2)=-15-8
C=-23
<u>Option D </u>
At (0,-9), x=0, y=-9
C=3(0)-4(-9)=0+36
C=36
The lowest value of C is -86. This occurs at the vertex (-2,20).
Therefore, the objective function C=3x-4y is minimized at (-2,20).
Answer:
4÷6
8÷12
16÷24
Step-by-step explanation:
Any of these will work. Hope this helps!
We know that
the rule is
y=x+2
then
for x=-3 -------------------> y=-3+2=-1
for x=-2 -------------------> y=-2+2=0
for x=-1 -------------------> y=-1+2=1
for x=0 -------------------> y=0+2=2
for x=1 -------------------> y=1+2=3
for x=3 -------------------> y=3+2=5
for x=4 -------------------> y=4+2=6
for x=5 -------------------> y=5+2=7
for x=6 -------------------> y=6+2=8
for x=7 -------------------> y=7+2=9
the answer is
<span>Input x -3 -2 -1 0 1 Output y -1 0 1 2 3</span>