Answer
given,
position of particle
x(t)= A t + B t²
A = -3.5 m/s
B = 3.9 m/s²
t = 3 s
a) x(t)= -3.5 t + 3.9 t²
velocity of the particle is equal to the differentiation of position w.r.t. time.
------(1)
velocity of the particle at t = 3 s
v = -3.5 + 7.8 x 3
v = 19.9 m/s
b) velocity of the particle at origin
time at which particle is at origin
x(t)= -3.5 t + 3.9 t²
0 = t (-3.5 + 3.9 t )
t = 0,
t = 0 , 0.897 s
speed of the particle at t = 0.897 s
from equation (1)
v = -3.9 + 7.8 t
v = -3.9 + 7.8 x 0.897
v = 3.1 m/s
Answer:
720,000
Explanation:
change in momentum = m (v2-v1)
= 45,000(258-242)= 720,000
Answer:
f = 347.08 N
Explanation:
The frictional force exerted by the floor on the refrigerator is given as follows:
where,
f = frictional force = ?
μ = coefficient of static friction = 0.58
W = Weight of refrigerator = mg
m = mass of refrigerator = 61 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
<u>f = 347.08 N</u>
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
Gravitational acceleration, g = GM/r^2. Additionally, for a satellite in a circular orbit, g = v^2/r
Where, G = Gravitational constant, M = Mass of earth, r = distance from the center of the earth to the satellite, v = linear speed of the satellite.
Equating the two expressions;
v^2/r = GM/r^2
v = Sqrt (GM/r);
But GM = Constant = 398600.5 km^3/sec^2
r = Altitude+Radius of the earth = 159+6371 = 6530 km
Substituting;
v = Sqrt (398600.5/6530) = 7.81 km/sec = 781 m/s