You can use factors to solve. Determine all the factor pairs of 24, find the two that are two numbers apart.
1, 24 X
2, 12 X
3, 8 X
4, 6 YES!
Algebraic way to solve using Quadratics:
l = 2 + w
A = lw
A = (2 + w)w Substitute (2 + w) for l
24 = (2 + w)w Substitute 24 in for the area
24 = 2w + w^2 Distribute
w^2 + 2w - 24 = 0 Set equal to 0 (put in standard form)
(w + 6) (w - 4) = 0 Factor
w + 6 = 0 and w - 4 = 0 Set each factor equal to 0.
So w= -6 or w = 4 ... -6 makes no sense for a length! So the width must be 4 and the length will be 4 + 2, which is 6.
Answer:
x=7
Step-by-step explanation:
Information provided
Weight of ant=
Weight of lion=
but units are not provided, assuming this unit is also grams
How many times lion's weight exceed an ant

=
Therefore, the value of x=7 if the unit for weight of lion is assumed to be same as unit for weight of an ant
Check the picture below.
well, we want only the equation of the diametrical line, now, the diameter can touch the chord at any several angles, as well at a right-angle.
bearing in mind that <u>perpendicular lines have negative reciprocal</u> slopes, hmm let's find firstly the slope of AB, and the negative reciprocal of that will be the slope of the diameter, that is passing through the midpoint of AB.
![\bf A(\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{5}~,~\stackrel{y_2}{1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{1}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{1}}}\implies \cfrac{-3}{4} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{slope of AB}}{-\cfrac{3}{4}}\qquad \qquad \qquad \stackrel{\textit{\underline{negative reciprocal} and slope of the diameter}}{\cfrac{4}{3}}](https://tex.z-dn.net/?f=%5Cbf%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B1%7D-%5Cstackrel%7By1%7D%7B4%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B5%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B-3%7D%7B4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bslope%20of%20AB%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7B%5Cunderline%7Bnegative%20reciprocal%7D%20and%20slope%20of%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%7D%7B3%7D%7D)
so, it passes through the midpoint of AB,

so, we're really looking for the equation of a line whose slope is 4/3 and runs through (3 , 5/2)
