moles NaOH = c · V = 0.2432 mmol/mL · 24.75 mL = 6.0192 mmol
moles H2SO4 = 6.0192 mmol NaOH · 1 mmol H2SO4 / 2 mmol NaOH = 3.0096 mmol
Hence
[H2SO4]= n/V = 3.0096 mmol / 38.94 mL = 0.07729 M
The answer to this question is [H2SO4] = 0.07729 M
Answer:
Y = 92.5 %
Explanation:
Hello there!
In this case, since the reaction between lead (II) nitrate and potassium bromide is:

Exhibits a 1:2 mole ratio of the former to the later, we can calculate the moles of lead (II) bromide product to figure out the limiting reactant:

Thus, the limiting reactant is the KBr as it yields the fewest moles of PbBr2 product. Afterwards, we calculate the mass of product by using its molar mass:

And the resulting percent yield:

Regards!
6.022 x 10^23, this is avogados number, a mole has 6.022 x 10^23 of anything, but in this instance, it is 6.022 x10^23 atoms of carbon.
Answer: D arts
Explanation: The left part of your brain does logic, science, language, and mathematics, the right part of your brain does creativity and arts.
<u>Answer:</u> The internal energy change for the reaction is -2850 J
<u>Explanation:</u>
- <u>Sign convention of heat:</u>
When heat is absorbed, the sign of heat is taken to be positive and when heat is released, the sign of heat is taken to be negative.
- <u>Sign convention of work:</u>
Work done for expansion process is taken as negative and work done for compression is taken as positive.
According to the First law of thermodynamics,

where,
= internal energy
q = heat absorbed or released = -2290 J
w = work done = -560 J
Putting values in above equation, we get:

Hence, the internal energy change for the reaction is -2850 J