Answer:
66.48% of full-term babies are between 19 and 21 inches long at birth
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean length of 20.5 inches and a standard deviation of 0.90 inches.
This means that 
What percentage of full-term babies are between 19 and 21 inches long at birth?
The proportion is the p-value of Z when X = 21 subtracted by the p-value of Z when X = 19. Then
X = 21



has a p-value of 0.7123
X = 19



has a p-value of 0.0475
0.7123 - 0.0475 = 0.6648
0.6648*100% = 66.48%
66.48% of full-term babies are between 19 and 21 inches long at birth
Answer:
45
Step-by-step explanation:
9 ÷ 1/5
9 × 5/1
9 × 5
45
Answer:
Step-by-step explanation:
x^2 + 3x + 2 = (x+1)(x+2)
x^2 + 4x + 3 = (x+1)(x+3)
LCM = (x+1)(x+2)(x+3) = (x^2 + 3x + 2) (x+3) = x^3 + 6x^2 + 11x + 6
Answer:
24
Step-by-step explanation:
84 divided by 7 equals 12.
12x2=24.
24 cups of coffe were sold.