Answer:
Mass of the silver will be equal to 46.70 gram
Explanation:
We have given heat required to raise the temperature of silver by 24°C is 269 J , so 
Specific heat of silver = 0.240 J/gram°C
We have to find the mass of silver
We know that heat required is given by
, here m is mass, c is specific heat of silver and
is rise in temperature
So 
m = 46.70 gram
So mass of the silver will be equal to 46.70 gram
The earth's gravitational acceleration is 9.8 m/s^2, and force = mass * acceleration. Therefore, a bag of sugar weighing 2.2 kg on earth would weigh 2.2 * 9.8 = 21.56 Newtons
If you multiply m (the unit for wavelength) with 1s (the unit for frequency), you will get m/s, the unit for speed. Now multiply! 25 m/s is your final answer!
Answer:
²₁H + ³₂He —> ⁴₂He + ¹₁H
Explanation:
From the question given above,
²₁H + ³₂He —> __ + ¹₁H
Let ⁿₐX be the unknown.
Thus the equation becomes:
²₁H + ³₂He —> ⁿₐX + ¹₁H
We shall determine, n, a and X. This can be obtained as follow:
For n:
2 + 3 = n + 1
5 = n + 1
Collect like terms
n = 5 – 1
n = 4
For a:
1 + 2 = a + 1
3 = a + 1
Collect like terms
a = 3 – 1
a = 2
For X:
n = 4
a = 2
X =?
ⁿₐX => ⁴₂X => ⁴₂He
Thus, the balanced equation is
²₁H + ³₂He —> ⁴₂He + ¹₁H
Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.