Answer:
the rate of change of velocity per unit of time.
Answer:
The frequency of radiation is 
Explanation:
Given:
Wavelength
m
Speed of light

For finding the frequency of radiation,




Therefore, the frequency of radiation is 
Answer:
Explanation:
Let t represent the time for Tina to catch David.
Hence, considering the equation of linear motion S = ut + 1/2at^2..... 1
For David u = 28.0 m/s where 'a' is set to nought
S = ut
S = 28t.......2
For Tina consider equation 1
Where acceleration = 2.90m/s^2 and u is set at nought
S = 1/2×2.90 m/s×t^2.......3
Equate 2 and 3
28t = 1.45t^2
Divide through by t
28 = 1.45t
t = 28/1.45
t = 19.31seconds
Now put the value of t into equation 3
S = 1/2×2.90 m/s×t^2.......3
= 1.45×20×20
= 580m
Tina must have driven 580meters before passing David
Considering the equation of linear motion : V^2 = U^2+2as
Where u is set at nought
V^2 = 2as
V^2 = 2×2.9×580
V^2 = 3364
V = √3364
V = 58m/s
Her speed will be 58m/s
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:

Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:

n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)
