The strength of the gravitational force between two objects depends<span> on </span>two<span>factors, </span>mass<span> and </span>distance<span>. the </span>force<span> of gravity the </span>masses<span> exert on each other. If one of the </span>masses<span> is doubled, the </span>force<span> of gravity </span>between<span> the </span>objects<span> is doubled. increases, the </span>force<span> of gravity decreases</span>
0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Answer:
I'm not a genius ok?
Explanation:
1. Radar communication, Analysis of the molecular and atomic structure, telephone communication
2. c
Answer:
Option C. 4 Hz
Explanation:
To know the correct answer to the question given above, it is important we know the definition of frequency.
Frequency can simply be defined as the number of complete oscillations or circles made in one second.
Considering the diagram given above, the wave passes through the medium over a period of one second.
Thus, we can obtain the frequency by simply counting the numbers of complete circles made during the period.
From the diagram given above,
The number of circles = 4
Thus,
The frequency is 4 Hz