Answer:
Given that,
R = 3x + 9y
Also, given that,
y = 6
R = 7
We have to find the value of x
For that, you can to put 6 and 7 to the equation instead of y and R respectively.
R = 3x + 9y
7 = 3x + 9 × 6
7 = 3x + 54
7 - 54 = 3x
- 47 = 3x

Hope this helps you :-)
Let me know if you have any other questions :-)
Under 45 mins is roughly 16%. This is because 68% of the curve exists within 1 SD of the mean. So 16% must be outside and smaller and 16% outside and larger (on average).
It is impossible to determine how likely you are to find someone with exactly the second amount. However, if you are looking for that or less, you would get 84%
Answer:
Step-by-step explanation:
10
(a) Yes all six trig functions exist for this point in quadrant III. The only time you'll run into problems is when either x = 0 or y = 0, due to division by zero errors. For instance, if x = 0, then tan(t) = sin(t)/cos(t) will have cos(t) = 0, as x = cos(t). you cannot have zero in the denominator. Since neither coordinate is zero, we don't have such problems.
---------------------------------------------------------------------------------------
(b) The following functions are positive in quadrant III:
tangent, cotangent
The following functions are negative in quadrant III
cosine, sine, secant, cosecant
A short explanation is that x = cos(t) and y = sin(t). The x and y coordinates are negative in quadrant III, so both sine and cosine are negative. Their reciprocal functions secant and cosecant are negative here as well. Combining sine and cosine to get tan = sin/cos, we see that the negatives cancel which is why tangent is positive here. Cotangent is also positive for similar reasons.