Answer:
![r = 1.34](https://tex.z-dn.net/?f=r%20%3D%201.34)
Step-by-step explanation:
Given
Solid = Cylinder + 2 hemisphere
![Volume = 10cm^3](https://tex.z-dn.net/?f=Volume%20%3D%2010cm%5E3)
Required
Determine the radius (r) that minimizes the surface area
First, we need to determine the volume of the shape.
Volume of Cylinder (V1) is:
![V_1 = \pi r^2h](https://tex.z-dn.net/?f=V_1%20%3D%20%5Cpi%20r%5E2h)
Volume of 2 hemispheres (V2) is:
![V_2 = \frac{2}{3}\pi r^3 +\frac{2}{3}\pi r^3](https://tex.z-dn.net/?f=V_2%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E3%20%2B%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E3)
![V_2 = \frac{4}{3}\pi r^3](https://tex.z-dn.net/?f=V_2%20%3D%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3)
Volume of the solid is:
![V = V_1 + V_2](https://tex.z-dn.net/?f=V%20%3D%20V_1%20%2B%20V_2)
![V = \pi r^2h + \frac{4}{3}\pi r^3](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20r%5E2h%20%2B%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3)
Substitute 10 for V
![10 = \pi r^2h + \frac{4}{3}\pi r^3](https://tex.z-dn.net/?f=10%20%3D%20%5Cpi%20r%5E2h%20%2B%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3)
Next, we make h the subject
![\pi r^2h = 10 - \frac{4}{3}\pi r^3](https://tex.z-dn.net/?f=%5Cpi%20r%5E2h%20%3D%2010%20-%20%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3)
Solve for h
![h = \frac{10}{\pi r^2} - \frac{\frac{4}{3}\pi r^3 }{\pi r^2}](https://tex.z-dn.net/?f=h%20%3D%20%5Cfrac%7B10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%20%7D%7B%5Cpi%20r%5E2%7D)
![h = \frac{10}{\pi r^2} - \frac{4\pi r^3 }{3\pi r^2}](https://tex.z-dn.net/?f=h%20%3D%20%5Cfrac%7B10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B4%5Cpi%20r%5E3%20%7D%7B3%5Cpi%20r%5E2%7D)
![h = \frac{10}{\pi r^2} - \frac{4r }{3}](https://tex.z-dn.net/?f=h%20%3D%20%5Cfrac%7B10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B4r%20%7D%7B3%7D)
Next, we determine the surface area
Surface area (A1) of the cylinder:
Note that the cylinder is covered by the 2 hemisphere.
So, we only calculate the surface area of the curved surface.
i.e.
![A_1 = 2\pi rh](https://tex.z-dn.net/?f=A_1%20%3D%202%5Cpi%20rh)
Surface Area (A2) of 2 hemispheres is:
![A_2 = 2\pi r^2+2\pi r^2](https://tex.z-dn.net/?f=A_2%20%3D%202%5Cpi%20r%5E2%2B2%5Cpi%20r%5E2)
![A_2 = 4\pi r^2](https://tex.z-dn.net/?f=A_2%20%3D%204%5Cpi%20r%5E2)
Surface Area (A) of solid is
![A = A_1 + A_2](https://tex.z-dn.net/?f=A%20%3D%20A_1%20%2B%20A_2)
![A = 2\pi rh + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%202%5Cpi%20rh%20%2B%204%5Cpi%20r%5E2)
Substitute ![h = \frac{10}{\pi r^2} - \frac{4r }{3}](https://tex.z-dn.net/?f=h%20%3D%20%5Cfrac%7B10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B4r%20%7D%7B3%7D)
![A = 2\pi r(\frac{10}{\pi r^2} - \frac{4r }{3}) + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%202%5Cpi%20r%28%5Cfrac%7B10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B4r%20%7D%7B3%7D%29%20%2B%204%5Cpi%20r%5E2)
Open bracket
![A = \frac{2\pi r*10}{\pi r^2} - \frac{2\pi r*4r }{3} + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B2%5Cpi%20r%2A10%7D%7B%5Cpi%20r%5E2%7D%20-%20%20%5Cfrac%7B2%5Cpi%20r%2A4r%20%7D%7B3%7D%20%2B%204%5Cpi%20r%5E2)
![A = \frac{2*10}{r} - \frac{2\pi r*4r }{3} + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B2%2A10%7D%7Br%7D%20-%20%20%5Cfrac%7B2%5Cpi%20r%2A4r%20%7D%7B3%7D%20%2B%204%5Cpi%20r%5E2)
![A = \frac{20}{r} - \frac{8\pi r^2 }{3} + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B20%7D%7Br%7D%20-%20%20%5Cfrac%7B8%5Cpi%20r%5E2%20%7D%7B3%7D%20%2B%204%5Cpi%20r%5E2)
![A = \frac{20}{r} + \frac{-8\pi r^2 }{3} + 4\pi r^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B20%7D%7Br%7D%20%2B%20%20%5Cfrac%7B-8%5Cpi%20r%5E2%20%7D%7B3%7D%20%2B%204%5Cpi%20r%5E2)
Take LCM
![A = \frac{20}{r} + \frac{-8\pi r^2 + 12\pi r^2}{3}](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B20%7D%7Br%7D%20%2B%20%20%5Cfrac%7B-8%5Cpi%20r%5E2%20%20%2B%2012%5Cpi%20r%5E2%7D%7B3%7D)
![A = \frac{20}{r} + \frac{4\pi r^2}{3}](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B20%7D%7Br%7D%20%2B%20%20%5Cfrac%7B4%5Cpi%20r%5E2%7D%7B3%7D)
Differentiate w.r.t r
![A' = -\frac{20}{r^2} + \frac{8\pi r}{3}](https://tex.z-dn.net/?f=A%27%20%3D%20-%5Cfrac%7B20%7D%7Br%5E2%7D%20%2B%20%20%5Cfrac%7B8%5Cpi%20r%7D%7B3%7D)
Equate A' to 0
![-\frac{20}{r^2} + \frac{8\pi r}{3} = 0](https://tex.z-dn.net/?f=-%5Cfrac%7B20%7D%7Br%5E2%7D%20%2B%20%20%5Cfrac%7B8%5Cpi%20r%7D%7B3%7D%20%20%3D%200)
Solve for r
![\frac{8\pi r}{3} = \frac{20}{r^2}](https://tex.z-dn.net/?f=%5Cfrac%7B8%5Cpi%20r%7D%7B3%7D%20%20%3D%20%5Cfrac%7B20%7D%7Br%5E2%7D)
Cross Multiply
![8\pi r * r^2 = 20 * 3](https://tex.z-dn.net/?f=8%5Cpi%20r%20%2A%20r%5E2%20%3D%2020%20%2A%203)
![8\pi r^3 = 60](https://tex.z-dn.net/?f=8%5Cpi%20%20r%5E3%20%3D%2060)
Divide both sides by ![8\pi](https://tex.z-dn.net/?f=8%5Cpi)
![r^3 = \frac{60}{8\pi}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B60%7D%7B8%5Cpi%7D)
![r^3 = \frac{15}{2\pi}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B15%7D%7B2%5Cpi%7D)
Take ![\pi = 22/7](https://tex.z-dn.net/?f=%5Cpi%20%3D%2022%2F7)
![r^3 = \frac{15}{2 * 22/7}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B15%7D%7B2%20%2A%2022%2F7%7D)
![r^3 = \frac{15}{44/7}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B15%7D%7B44%2F7%7D)
![r^3 = \frac{15*7}{44}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B15%2A7%7D%7B44%7D)
![r^3 = \frac{105}{44}](https://tex.z-dn.net/?f=r%5E3%20%3D%20%5Cfrac%7B105%7D%7B44%7D)
Take cube roots of both sides
![r = \sqrt[3]{\frac{105}{44}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B105%7D%7B44%7D%7D)
![r = \sqrt[3]{2.38636363636}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B2.38636363636%7D)
![r = 1.33632535155](https://tex.z-dn.net/?f=r%20%3D%201.33632535155)
(approximated)
<em>Hence, the radius is 1.34cm</em>