Set the width to be x. Thus, the length is 4x.
The perimeter is 2(x+4x)=100, so x=10.
Plugging in x=10, you get that 4x=40.
So, the area of the rectangle is 400
.
Because there are 100 centimeters in a meter and you are asking for area, you must multiply by
to get 4000000
.
Debido a restricciones de extensión y la características del ejercicio, recomendamos leer la explicación de esta pregunta para mayores detalles sobre la adición de números <em>enteros</em>.
<h3>¿Cuáles son los resultados de cada suma?</h3>
En este ejercicio tenemos un grupo de sumas con números <em>enteros</em> <em>positivos</em> y <em>negativos</em>, en las cuales se prueba la capacidad del estudiante para realizar varias operaciones en serie (adición, sustracción) y comprender las diferencias entre números <em>positivos</em>, <em>negativos</em> y <em>neutros</em>. Ahora procedemos a determinar el resultado de cada una de las expresiones:
20 + 50 + 30 + 7 = 107
30 + 5 + 2 = 37
- 200 - 50 - 70 - 8 = - 328
- 500 + 100 - 20 + 50 = - 370
10 - 5 = 5
20 + 50 - 25 - 10 = 35
- 100 + 20 = - 80
- 30 + 5 + 4 - 20 + 8 = - 33
- 258 + 8 = - 250
- 10 + 20 + 520 - 100 + 8 = 438
- 20 - 5 - 42 + 3 = - 64
1000 - 200 + 50 + 30 - 45 + 75 - 87 + 90 + 50 - 100 + 50 - 10 = 903
- 400 + 500 - 200 - 50 + 48 + 8 - 47 - 50 = - 191
300 + 20 - 50 + 30 - 84 + 35 - 7 + 20 - 40 + 10 - 45 + 65 + 8 - 55 = 207
800 + 50 - 69 + 8 - 35 + 85 - 54 + 40 + 85 + 74 - 32 - 8 + 65 - 27 = 982
Para aprender más sobre sumas: brainly.com/question/1456841
#SPJ1
Answer:
2 67/100
don't forget to say thanks and rate!
The domain the given graph is :
- -12 <u><</u> x <u><</u> 13
Answer:
When sampling from a population, the sample mean will: be closer to the population mean as the sample size increases.
Step-by-step explanation:
The sample mean is not always equal to the population mean but if we increase the number of samples then the mean of the sample would become more and more closer to the population mean.
Usually the population size is very huge that is why we select a random sample from the population, care must be taken to ensure randomized sampling otherwise results would not be accurate. After that we have to make sure that the number of samples are enough for the given population size. The number of samples depends upon the shape of the population. If the population is normal than according to central limit theorem, a less number of samples would be enough to ensure normal distribution of sampling mean, otherwise a greater sample size will be required.